54 research outputs found

    Iterative Few-shot Semantic Segmentation from Image Label Text

    Full text link
    Few-shot semantic segmentation aims to learn to segment unseen class objects with the guidance of only a few support images. Most previous methods rely on the pixel-level label of support images. In this paper, we focus on a more challenging setting, in which only the image-level labels are available. We propose a general framework to firstly generate coarse masks with the help of the powerful vision-language model CLIP, and then iteratively and mutually refine the mask predictions of support and query images. Extensive experiments on PASCAL-5i and COCO-20i datasets demonstrate that our method not only outperforms the state-of-the-art weakly supervised approaches by a significant margin, but also achieves comparable or better results to recent supervised methods. Moreover, our method owns an excellent generalization ability for the images in the wild and uncommon classes. Code will be available at https://github.com/Whileherham/IMR-HSNet.Comment: ijcai 202

    Prototypical Contrast Adaptation for Domain Adaptive Semantic Segmentation

    Full text link
    Unsupervised Domain Adaptation (UDA) aims to adapt the model trained on the labeled source domain to an unlabeled target domain. In this paper, we present Prototypical Contrast Adaptation (ProCA), a simple and efficient contrastive learning method for unsupervised domain adaptive semantic segmentation. Previous domain adaptation methods merely consider the alignment of the intra-class representational distributions across various domains, while the inter-class structural relationship is insufficiently explored, resulting in the aligned representations on the target domain might not be as easily discriminated as done on the source domain anymore. Instead, ProCA incorporates inter-class information into class-wise prototypes, and adopts the class-centered distribution alignment for adaptation. By considering the same class prototypes as positives and other class prototypes as negatives to achieve class-centered distribution alignment, ProCA achieves state-of-the-art performance on classical domain adaptation tasks, {\em i.e., GTA5 →\to Cityscapes \text{and} SYNTHIA →\to Cityscapes}. Code is available at \href{https://github.com/jiangzhengkai/ProCA}{ProCA

    Align, Perturb and Decouple: Toward Better Leverage of Difference Information for RSI Change Detection

    Full text link
    Change detection is a widely adopted technique in remote sense imagery (RSI) analysis in the discovery of long-term geomorphic evolution. To highlight the areas of semantic changes, previous effort mostly pays attention to learning representative feature descriptors of a single image, while the difference information is either modeled with simple difference operations or implicitly embedded via feature interactions. Nevertheless, such difference modeling can be noisy since it suffers from non-semantic changes and lacks explicit guidance from image content or context. In this paper, we revisit the importance of feature difference for change detection in RSI, and propose a series of operations to fully exploit the difference information: Alignment, Perturbation and Decoupling (APD). Firstly, alignment leverages contextual similarity to compensate for the non-semantic difference in feature space. Next, a difference module trained with semantic-wise perturbation is adopted to learn more generalized change estimators, which reversely bootstraps feature extraction and prediction. Finally, a decoupled dual-decoder structure is designed to predict semantic changes in both content-aware and content-agnostic manners. Extensive experiments are conducted on benchmarks of LEVIR-CD, WHU-CD and DSIFN-CD, demonstrating our proposed operations bring significant improvement and achieve competitive results under similar comparative conditions. Code is available at https://github.com/wangsp1999/CD-Research/tree/main/openAPDComment: To appear in IJCAI 202

    Self-supervised Likelihood Estimation with Energy Guidance for Anomaly Segmentation in Urban Scenes

    Full text link
    Robust autonomous driving requires agents to accurately identify unexpected areas in urban scenes. To this end, some critical issues remain open: how to design advisable metric to measure anomalies, and how to properly generate training samples of anomaly data? Previous effort usually resorts to uncertainty estimation and sample synthesis from classification tasks, which ignore the context information and sometimes requires auxiliary datasets with fine-grained annotations. On the contrary, in this paper, we exploit the strong context-dependent nature of segmentation task and design an energy-guided self-supervised frameworks for anomaly segmentation, which optimizes an anomaly head by maximizing the likelihood of self-generated anomaly pixels. To this end, we design two estimators for anomaly likelihood estimation, one is a simple task-agnostic binary estimator and the other depicts anomaly likelihood as residual of task-oriented energy model. Based on proposed estimators, we further incorporate our framework with likelihood-guided mask refinement process to extract informative anomaly pixels for model training. We conduct extensive experiments on challenging Fishyscapes and Road Anomaly benchmarks, demonstrating that without any auxiliary data or synthetic models, our method can still achieves competitive performance to other SOTA schemes

    Learning Global-aware Kernel for Image Harmonization

    Full text link
    Image harmonization aims to solve the visual inconsistency problem in composited images by adaptively adjusting the foreground pixels with the background as references. Existing methods employ local color transformation or region matching between foreground and background, which neglects powerful proximity prior and independently distinguishes fore-/back-ground as a whole part for harmonization. As a result, they still show a limited performance across varied foreground objects and scenes. To address this issue, we propose a novel Global-aware Kernel Network (GKNet) to harmonize local regions with comprehensive consideration of long-distance background references. Specifically, GKNet includes two parts, \ie, harmony kernel prediction and harmony kernel modulation branches. The former includes a Long-distance Reference Extractor (LRE) to obtain long-distance context and Kernel Prediction Blocks (KPB) to predict multi-level harmony kernels by fusing global information with local features. To achieve this goal, a novel Selective Correlation Fusion (SCF) module is proposed to better select relevant long-distance background references for local harmonization. The latter employs the predicted kernels to harmonize foreground regions with both local and global awareness. Abundant experiments demonstrate the superiority of our method for image harmonization over state-of-the-art methods, \eg, achieving 39.53dB PSNR that surpasses the best counterpart by +0.78dB ↑\uparrow; decreasing fMSE/MSE by 11.5\%↓\downarrow/6.7\%↓\downarrow compared with the SoTA method. Code will be available at \href{https://github.com/XintianShen/GKNet}{here}.Comment: 10 pages, 10 figure

    Stroke-based Neural Painting and Stylization with Dynamically Predicted Painting Region

    Full text link
    Stroke-based rendering aims to recreate an image with a set of strokes. Most existing methods render complex images using an uniform-block-dividing strategy, which leads to boundary inconsistency artifacts. To solve the problem, we propose Compositional Neural Painter, a novel stroke-based rendering framework which dynamically predicts the next painting region based on the current canvas, instead of dividing the image plane uniformly into painting regions. We start from an empty canvas and divide the painting process into several steps. At each step, a compositor network trained with a phasic RL strategy first predicts the next painting region, then a painter network trained with a WGAN discriminator predicts stroke parameters, and a stroke renderer paints the strokes onto the painting region of the current canvas. Moreover, we extend our method to stroke-based style transfer with a novel differentiable distance transform loss, which helps preserve the structure of the input image during stroke-based stylization. Extensive experiments show our model outperforms the existing models in both stroke-based neural painting and stroke-based stylization. Code is available at https://github.com/sjtuplayer/Compositional_Neural_PainterComment: ACM MM 202

    TEINet: Towards an Efficient Architecture for Video Recognition

    Full text link
    Efficiency is an important issue in designing video architectures for action recognition. 3D CNNs have witnessed remarkable progress in action recognition from videos. However, compared with their 2D counterparts, 3D convolutions often introduce a large amount of parameters and cause high computational cost. To relieve this problem, we propose an efficient temporal module, termed as Temporal Enhancement-and-Interaction (TEI Module), which could be plugged into the existing 2D CNNs (denoted by TEINet). The TEI module presents a different paradigm to learn temporal features by decoupling the modeling of channel correlation and temporal interaction. First, it contains a Motion Enhanced Module (MEM) which is to enhance the motion-related features while suppress irrelevant information (e.g., background). Then, it introduces a Temporal Interaction Module (TIM) which supplements the temporal contextual information in a channel-wise manner. This two-stage modeling scheme is not only able to capture temporal structure flexibly and effectively, but also efficient for model inference. We conduct extensive experiments to verify the effectiveness of TEINet on several benchmarks (e.g., Something-Something V1&V2, Kinetics, UCF101 and HMDB51). Our proposed TEINet can achieve a good recognition accuracy on these datasets but still preserve a high efficiency.Comment: Accepted by AAAI 202
    • …
    corecore